Select Page

China wholesaler Customized Jaw Couplings, Spline Coupling, Spline Drive Coupling

Product Description

Densen customized jaw couplings,spline coupling,spline drive coupling

Product Name
 
Densen customized jaw couplings,spline coupling,spline drive coupling
DN mm
 
12~160mm
Rated Torque
 
25~25000 N·m
Allowable speed
 
15300~1500 N·m
Material
 
35CrMo/ZG270/45# steel/Aluminum alloy
Application
 
Widely used in metallurgy, mining, engineering and other fields.

Why Choose Us

1. One stop service:
We have 5 own factories and 50+ sub-contractors located in different areas of China to offer you one-stop manufacturing and purchasing services to help you save time and reduce procurement cost.

2. Your eyes in China:

Our commitment to quality permeates from quoting, scheduling, production, inspection to deliver into your warehouse, our QC team will remark the errors if has on QC documents for your checking before delivery as your 3rd party.

3. Your R&Dconsultant:
With professional engineers team and 29 years manufacture experience ,we would help you work out problems during new parts’ development, optimize design and recommend the most cost-effective solution.

4. Your Emergency Solver:
With continued grown factories team and our QC teams located in different areas, if customers need to expedite the delivery, we would be able to adopt another factory to produce together immediately.

5. Quality Guaranty:
No matter how long time the products delivered, we are responsible for the quality. In case the products be rejected, we would replace them or return fund according to your demand without hesitation

FAQQ1. Are you a manufacturer or a trader?

Manufacture, we have 5 own foundries, 4 in ZheJiang Province, 1 in ZHangZhoug Province

Q2. Do you have MOQ request?

1 pcs per order is ok with us , unless material is seldom used.

Q3. If I only have a sample,without drawings, can you quote then manufacture for me?

Just send us the sample, we would have the sample simulated and measured by professional equipment then issue formal drawings for
you , at the same time, we could help you optimize the design according to your demand and related processes’ feasibility.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

drive coupling

Are There Specific Safety Precautions to Consider When Working with Drive Couplings?

Yes, working with drive couplings requires certain safety precautions to ensure the safety of personnel and the integrity of the equipment. Here are some important safety considerations when dealing with drive couplings:

  • Lockout-Tagout (LOTO): Before performing any maintenance or repair work on machinery with drive couplings, it is essential to implement a proper lockout-tagout procedure. This involves isolating and securing the power source and equipment to prevent unexpected startup during the maintenance process. Only authorized personnel should have access to the equipment during LOTO procedures.
  • PPE (Personal Protective Equipment): Personnel working on or near drive couplings should wear appropriate personal protective equipment, including safety glasses, gloves, and any other required protective gear. This helps protect against potential hazards such as flying debris or pinch points.
  • Proper Installation: During installation, it is crucial to follow the manufacturer’s guidelines and instructions to ensure the drive coupling is correctly aligned and mounted. Proper alignment minimizes stresses on the coupling and associated machinery, reducing the risk of premature failure and potential accidents.
  • Regular Inspections: Implement a schedule for regular inspections of drive couplings to identify any signs of wear, misalignment, or damage. Addressing issues early can prevent unexpected failures and reduce the risk of accidents or production downtime.
  • Load and Speed Limits: Respect the specified load and speed limits of the drive coupling. Exceeding these limits can lead to catastrophic failures and pose safety risks to personnel and equipment.
  • Maintenance by Qualified Personnel: Complex maintenance or repair tasks on drive couplings should be performed by qualified personnel with relevant experience and training. Improper maintenance can compromise the coupling’s performance and lead to safety hazards.
  • Temperature Limits: Some drive couplings have temperature limits for safe operation. Ensure that the operating temperature is within the recommended range to avoid material degradation and potential hazards.
  • Proper Lubrication: If the drive coupling requires lubrication, use the recommended lubricant and apply it as per the manufacturer’s guidelines. Inadequate or excessive lubrication can impact the coupling’s performance and increase the risk of failure.
  • Safe Distance: Keep a safe distance from rotating couplings and rotating machinery to prevent accidental contact with moving parts. Implement barriers or guarding to prevent unintentional access.

Adhering to these safety precautions ensures that working with drive couplings is done safely and efficiently, minimizing the risk of accidents and maintaining the longevity of the equipment.

drive coupling

Can Drive Couplings Compensate for Misalignments in Shafts?

Yes, drive couplings are designed to compensate for certain degrees of misalignment between shafts in mechanical power transmission systems. The ability of a coupling to accommodate misalignments depends on its type and design. Here are the common types of misalignments and the corresponding coupling types that can handle them:

  • Parallel Misalignment: This type of misalignment occurs when the axes of the two shafts are parallel but not perfectly aligned. Elastomeric couplings, such as jaw couplings and tire couplings, are commonly used to handle parallel misalignment. These couplings have flexible elements that can offset slight parallel offsets between the shafts.
  • Angular Misalignment: Angular misalignment refers to the situation where the axes of the two shafts are not collinear and form an angle. Flexible couplings like beam couplings and Oldham couplings are effective in accommodating angular misalignment. They have a design that allows for relative movement between the shafts while transmitting torque.
  • Radial Misalignment: Radial misalignment occurs when there is a gap between the axes of the two shafts. Flexible couplings with multiple elements, such as disc couplings and grid couplings, can handle radial misalignment to some extent. These couplings use flexible components to allow relative movement between the shafts.
  • Combination Misalignment: Some couplings, like universal joint couplings and double loop couplings, are designed to compensate for multiple types of misalignments simultaneously. These couplings are suitable for applications where complex misalignments exist.

It’s important to note that while drive couplings can compensate for certain degrees of misalignment, they have their limitations. Excessive misalignment or misalignments beyond their design capabilities can lead to premature wear, reduced coupling life, and decreased efficiency in power transmission. Proper alignment during installation is still essential to ensure the longevity and optimal performance of the coupling and the entire power transmission system.

When selecting a drive coupling for an application with misalignment concerns, it is crucial to consider the type and magnitude of misalignment expected and choose a coupling that can handle it effectively while still meeting other performance requirements.

drive coupling

How does a Flexible Drive Coupling differ from a Rigid Drive Coupling?

A drive coupling is a mechanical device used to connect two shafts in a power transmission system. Drive couplings can be broadly classified into two main categories: flexible drive couplings and rigid drive couplings. Each type offers distinct advantages and is suitable for different application requirements. Here’s how a flexible drive coupling differs from a rigid drive coupling:

Flexible Drive Coupling:

A flexible drive coupling is designed with an element that allows some degree of movement and flexibility between the connected shafts. This element can be made of various materials, such as elastomers, metal discs, or grids. The flexibility of the coupling element enables it to accommodate misalignments, shocks, and vibrations, making it ideal for applications where these factors are present.

Main Characteristics:

  • Misalignment Absorption: Flexible couplings can compensate for angular, parallel, and axial misalignments between the shafts, reducing stress on connected machinery and extending component life.
  • Shock and Vibration Damping: The flexible element of the coupling dampens shocks and vibrations, protecting the connected equipment from sudden impact loads and reducing noise and wear.
  • Torsional Flexibility: Flexible couplings can twist and bend, providing torsional flexibility to accommodate fluctuations in torque and prevent damage from torque spikes.
  • Energy Absorption: In high-torque applications, the flexible element absorbs energy and reduces peak loads, which can be beneficial for protecting the drivetrain.

Rigid Drive Coupling:

A rigid drive coupling, on the other hand, is designed to provide a direct and rigid connection between the shafts. It has little to no flexibility or movement in the coupling itself. Rigid couplings are typically used when precise shaft alignment is essential, and there is minimal misalignment or vibration in the system.

Main Characteristics:

  • Precision Alignment: Rigid couplings ensure precise alignment between the connected shafts, which is critical in applications requiring accurate positioning and minimal shaft deflection.
  • No Misalignment Compensation: Unlike flexible couplings, rigid couplings do not compensate for misalignments, so proper alignment during installation is crucial to prevent premature wear or damage to the equipment.
  • Torsional Stiffness: Rigid couplings have high torsional stiffness, meaning they efficiently transmit torque with minimal torsional deflection.
  • High Torque Capacity: Due to their solid construction, rigid couplings can handle higher torque loads compared to some flexible coupling types.

In summary, the choice between a flexible drive coupling and a rigid drive coupling depends on the specific application’s requirements, including the degree of misalignment, shock and vibration levels, torque capacity, and precision alignment needs. Flexible couplings are suitable for applications with misalignments and dynamic loads, while rigid couplings are preferred for precise positioning and high-torque applications with minimal misalignment.

China wholesaler Customized Jaw Couplings, Spline Coupling, Spline Drive Coupling  China wholesaler Customized Jaw Couplings, Spline Coupling, Spline Drive Coupling
editor by CX 2024-05-09

drive coupling

As one of leading drive coupling manufacturers, suppliers and exporters of products, We offer drive coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of drive coupling

Recent Posts