Select Page

China manufacturer Non-Contact Magnetic Wheel Magnetic Coupling Transmission Drive Gear Stainless Mechanical Component

Product Description

Product Description

 

The magnetic wheel is a non-contact power transmission device that uses the principle of interaction between the attraction and the repulsion force of the magnet.
The magnetic wheel is a non-contact driven product in the production line of LCD, PDP, PCB, TFT, OLED, SOLAR CELL, etc. in a clean environment that does not allow fine impurities. It can replace mechanical gears driven by friction.
 

Detailed Photos

 

Features

 

Dust-free environment Using magnetic force, in the non-contact state, it can be used to transfer products in a vacuum where a dust-free environment is required.
Low gas discharge Large machines into the vacuum machine, in order to reduce gas, according to special surface treatment, can be used in 10-5PA environment
Low sound It has a subwoofer effect unimaginable in previous transmission machines such as gears and conveyor belts. Can provide a clean and tidy production environment.
Torque limit function If the abnormal load is generated, the 2 magnetic gears will rotate separately to achieve the torque limit function. In addition, because of the non-contact environment, no mechanical wear, because the service life is longer than the previous transmission tools such as gears.
Reduce cost Reduce operating costs without replacing parts due to wear and tear. Because even if the vacuum standby is repeated, it will not have any impact on the performance, so there is no need for complex and expensive design in the past

 

Product Parameters

 

Using

 

Other Products

 

Packaging & Shipping

 

FAQ

 

Q: Are you trading company or manufacturer ?
A: We are manufacturer.
Q: How to order ?
A: Normally you can order our products by using Made-in China platform or contacting representatives by Email. 
After we receive your messages, we will help you to choose the right specifications and other inquiries. 
Then we will send an proforma invoice to you via mail, it includes details of your order and our bank information. 
After we received your payment by TT, we will ship your goods and we will send the invoice, packing list, and the express tracking number via mail.
Q: What is our term of trade ?
A: Usually we use EX WORKS. If you need other term of trade, please let us know.
Q: How to pay ?
A: We accept the payment by T/T (bank transfer) or pay through Made-in China platform. 
Please inquire us about the details in advance.
Q: How are you going to deliver our goods ?
A: We can ship your goods either by air express (FedEx, DHL, UPS, TNT etc) or by sea. 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

drive coupling

Are There Specific Safety Precautions to Consider When Working with Drive Couplings?

Yes, working with drive couplings requires certain safety precautions to ensure the safety of personnel and the integrity of the equipment. Here are some important safety considerations when dealing with drive couplings:

  • Lockout-Tagout (LOTO): Before performing any maintenance or repair work on machinery with drive couplings, it is essential to implement a proper lockout-tagout procedure. This involves isolating and securing the power source and equipment to prevent unexpected startup during the maintenance process. Only authorized personnel should have access to the equipment during LOTO procedures.
  • PPE (Personal Protective Equipment): Personnel working on or near drive couplings should wear appropriate personal protective equipment, including safety glasses, gloves, and any other required protective gear. This helps protect against potential hazards such as flying debris or pinch points.
  • Proper Installation: During installation, it is crucial to follow the manufacturer’s guidelines and instructions to ensure the drive coupling is correctly aligned and mounted. Proper alignment minimizes stresses on the coupling and associated machinery, reducing the risk of premature failure and potential accidents.
  • Regular Inspections: Implement a schedule for regular inspections of drive couplings to identify any signs of wear, misalignment, or damage. Addressing issues early can prevent unexpected failures and reduce the risk of accidents or production downtime.
  • Load and Speed Limits: Respect the specified load and speed limits of the drive coupling. Exceeding these limits can lead to catastrophic failures and pose safety risks to personnel and equipment.
  • Maintenance by Qualified Personnel: Complex maintenance or repair tasks on drive couplings should be performed by qualified personnel with relevant experience and training. Improper maintenance can compromise the coupling’s performance and lead to safety hazards.
  • Temperature Limits: Some drive couplings have temperature limits for safe operation. Ensure that the operating temperature is within the recommended range to avoid material degradation and potential hazards.
  • Proper Lubrication: If the drive coupling requires lubrication, use the recommended lubricant and apply it as per the manufacturer’s guidelines. Inadequate or excessive lubrication can impact the coupling’s performance and increase the risk of failure.
  • Safe Distance: Keep a safe distance from rotating couplings and rotating machinery to prevent accidental contact with moving parts. Implement barriers or guarding to prevent unintentional access.

Adhering to these safety precautions ensures that working with drive couplings is done safely and efficiently, minimizing the risk of accidents and maintaining the longevity of the equipment.

drive coupling

Can Drive Couplings Compensate for Misalignments in Shafts?

Yes, drive couplings are designed to compensate for certain degrees of misalignment between shafts in mechanical power transmission systems. The ability of a coupling to accommodate misalignments depends on its type and design. Here are the common types of misalignments and the corresponding coupling types that can handle them:

  • Parallel Misalignment: This type of misalignment occurs when the axes of the two shafts are parallel but not perfectly aligned. Elastomeric couplings, such as jaw couplings and tire couplings, are commonly used to handle parallel misalignment. These couplings have flexible elements that can offset slight parallel offsets between the shafts.
  • Angular Misalignment: Angular misalignment refers to the situation where the axes of the two shafts are not collinear and form an angle. Flexible couplings like beam couplings and Oldham couplings are effective in accommodating angular misalignment. They have a design that allows for relative movement between the shafts while transmitting torque.
  • Radial Misalignment: Radial misalignment occurs when there is a gap between the axes of the two shafts. Flexible couplings with multiple elements, such as disc couplings and grid couplings, can handle radial misalignment to some extent. These couplings use flexible components to allow relative movement between the shafts.
  • Combination Misalignment: Some couplings, like universal joint couplings and double loop couplings, are designed to compensate for multiple types of misalignments simultaneously. These couplings are suitable for applications where complex misalignments exist.

It’s important to note that while drive couplings can compensate for certain degrees of misalignment, they have their limitations. Excessive misalignment or misalignments beyond their design capabilities can lead to premature wear, reduced coupling life, and decreased efficiency in power transmission. Proper alignment during installation is still essential to ensure the longevity and optimal performance of the coupling and the entire power transmission system.

When selecting a drive coupling for an application with misalignment concerns, it is crucial to consider the type and magnitude of misalignment expected and choose a coupling that can handle it effectively while still meeting other performance requirements.

drive coupling

Types of Drive Couplings and Their Applications in Various Industries

Drive couplings come in various types, each designed to meet specific application requirements. Depending on the industry and the type of machinery involved, different types of drive couplings are used to optimize power transmission efficiency and reliability. Here are some common types of drive couplings and their applications in various industries:

  • Jaw Couplings: Jaw couplings are flexible couplings that use elastomeric inserts to transmit torque. They are commonly used in industrial pumps, compressors, and conveyors. The elastomeric inserts provide shock absorption and vibration dampening, making them suitable for applications where misalignment and vibration are present.
  • Gear Couplings: Gear couplings are robust and torsionally rigid couplings that use gear teeth to transmit torque between shafts. They are often used in heavy-duty applications such as steel rolling mills, paper mills, and marine propulsion systems. Gear couplings can handle high torque and misalignments, making them ideal for demanding industrial environments.
  • Disc Couplings: Disc couplings use thin metal discs to transmit torque and accommodate misalignment. They are widely used in high-speed applications, such as gas turbines, generators, and test rigs. Disc couplings offer high torque capacity and are known for their torsional stiffness and balance characteristics.
  • Grid Couplings: Grid couplings use a grid-like flexible element to transmit torque. They are commonly used in industrial pumps, fans, and compressors. Grid couplings offer excellent shock absorption and misalignment capability, making them suitable for applications where protection against sudden shocks is required.
  • Tyre Couplings: Tyre couplings use an elastomeric tyre between two hubs to transmit torque. They are widely used in various industries, including steel, mining, and power generation. Tyre couplings can accommodate misalignments and provide vibration damping, making them versatile for different industrial applications.
  • Bellows Couplings: Bellows couplings use a thin-walled metallic bellows to transmit torque and compensate for misalignments. They are commonly used in precision motion control applications, such as robotics, CNC machines, and medical equipment, where minimal backlash and high torsional stiffness are required.
  • Universal Joints: Universal joints are used to transmit torque between shafts at an angle. They are commonly found in automotive drivelines, agricultural equipment, and industrial machinery. Universal joints allow angular misalignments and are widely used in applications where rotational movement must be transferred through non-aligned shafts.

The choice of drive coupling type depends on factors such as torque requirements, speed, misalignment, and specific environmental conditions. Each type of coupling has its unique advantages and limitations, and selecting the right coupling for a particular application is crucial for ensuring optimal power transmission and machinery performance in various industries.

China manufacturer Non-Contact Magnetic Wheel Magnetic Coupling Transmission Drive Gear Stainless Mechanical Component  China manufacturer Non-Contact Magnetic Wheel Magnetic Coupling Transmission Drive Gear Stainless Mechanical Component
editor by CX 2024-03-29

drive coupling

As one of leading drive coupling manufacturers, suppliers and exporters of products, We offer drive coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of drive coupling

Recent Posts