Select Page

China best SWC Cardan Drive Shaft Coupling

Product Description

SWC CH Cardan Shaft(JB/T5513-91)

Cardan shaft is widely used in rolling mill, punch, straightener, crusher, ship drive, paper making equipment, common machinery, water pump equipment, test bench, and other mechanical applications.

Advantage:
1. Low life-cycle costs and long service life;
2. Increase productivity;
3. Professional and innovative solutions;
4. Reduce carbon dioxide emissions, and environmental protection;
5. High torque capacity even at large deflection angles;
6. Easy to move and run smoothly;

♦SWC  CH Cardan Shaft Basic Parameter And Main Dimension(JB/T5513-1991)

Model Tactical diameter
D
mm
Nominal torque
Tn
kN·m
Fatique
torque
Tf
kN·m
Axis rotation
β
(°)
Stretch
length
LS
mm
Lmin Size
mm
Rotary inertia
kg.m2
Weight
kg
D1
js11
D2
H7
D3 Lm n-d k t b
h9
g Lmin
 
Increase
100mm
Lmin Increase
100mm
SWC180CH1 180 20 10 ≤25 200 925 155 105 114 110 8-17 17 5 24 7 0.181 0.0070 74 2.8
SWC180CH2 700 1425 0.216 104
SWC200CH1 200 32 16 ≤15 80 720 170 120 127 135 8-17 19 5 28 16 0.276 0.0130 76 3.6
SWC200CH2 50 690 0.261 74
SWC225CH1 225 40 20 ≤15 85 710 196 135 152 120 8-17 20 5 32 9.0 0.415 0.5714 95 4.9
SWC225CH2 70 640 0.397 92
SWC250CH1 250 63 31.5 ≤15 100 795 218 150 168 140 8-19 25 6 40 12.5 0.900 0.5717 148 5.3
SWC250CH2 70 735 0.885 136
SWC285CH1 285 90 45 ≤15 120 950 245 170 194 160 8-21 27 7 40 15.0 1.826 0.571 229 6.3
SWC285CH2 80 880 1.801 221
SWC315CH1 315 125 63 ≤15 130 1070 280 185 219 180 10-23 32 8 40 15.0 3.331 0.571 346 8.0
SWC315CH2 90 980 3.163 334
SWC350CH1 350 180 90 ≤15 140 1170 310 210 267 194 10-23 35 8 50 16.0 6.215 0.2219 508 15.0
SWC350CH2 90 1070 5.824 485
SWC390CH1 390 250 125 ≤15 150 1300 345 235 267 215 10-25 40 8 70 18.0 11.125 0.2219 655 15.0
SWC390CH2 90 1200 10.763 600
SWC440CH1 440 355 180 ≤15 400 2110 390 255 325 260 16-28 42 10 80 20 22.540 0.4744 1312 21.7
SWC440CH2 800 2510 24.430 1537
SWC490CH1 490 500 250 ≤15 400 2220 435 275 325 270 16-31 47 12 90 22.5 33.970 0.4744 1554 21.7
SWC490CH2 800 2620 35.870 1779
SWC550CH1 550 710 355 ≤15 500 2585 492 320 426 305 16-31 50 12 100 22.5 72.790 1.3570 2585 34.0
SWC550CH2 1000 3085 79.570 3045

·Notice:1.Tf-Torque allowed by fatigue strength under varible load

            2.Lmin-Minimum length after shortening

            3.L-Installation length as required

Detailed Photos

Packaging & Shipping
Company Profile

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

Our Services

1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.

5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artwork.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances. 

Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order? 
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

drive coupling

Can Drive Couplings Handle Reversing Loads and Shock Loads Effectively?

Yes, drive couplings are designed to handle reversing loads and shock loads effectively in various industrial applications. Their ability to accommodate these dynamic loads makes them suitable for many power transmission scenarios. Here’s how drive couplings handle reversing loads and shock loads:

  • Reversing Loads: Drive couplings, especially flexible couplings like elastomeric, grid, and gear couplings, can handle reversing loads without difficulty. These couplings have torsional flexibility, which allows them to compensate for angular misalignments and absorb shocks during load reversals. As the direction of the load changes, the coupling flexes and adjusts accordingly, minimizing stress on the connected equipment. This flexibility also reduces the wear and tear on both the coupling and the connected machinery, leading to improved durability and extended service life.
  • Shock Loads: Drive couplings are engineered to handle shock loads efficiently. Shock loads are sudden, high-intensity forces that can occur during equipment start-ups, stops, or unexpected changes in operating conditions. Elastomeric couplings are particularly effective in damping these shock loads due to the flexibility of their elastomeric elements. Grid couplings with a spring-like grid structure and gear couplings with rigid teeth also excel at distributing and absorbing shock loads. Even chain couplings, designed with roller chains, can effectively handle shock loads by absorbing the impact through the rollers and chain links.

When selecting a drive coupling for an application that involves reversing loads or shock loads, it’s essential to consider factors such as the magnitude and frequency of the loads, the operating environment, and the specific coupling’s design capabilities. Manufacturers often provide load capacity charts and guidelines to help users select the appropriate coupling for their requirements.

Proper maintenance and regular inspections are also essential to ensure that the coupling remains in good working condition. Monitoring the coupling’s performance and addressing any signs of wear or damage promptly can prevent unexpected failures and enhance the overall reliability of the power transmission system.

drive coupling

How to Select the Right Drive Coupling for Specific Torque and Speed Requirements

Choosing the appropriate drive coupling for specific torque and speed requirements is essential to ensure reliable and efficient power transmission in mechanical systems. Here are the steps to help you make the right selection:

  1. Identify Torque and Speed Parameters: Determine the maximum and minimum torque values that the coupling will experience during operation. Also, establish the required operating speed range.
  2. Consider the Application: Evaluate the application’s characteristics, such as the nature of the driven equipment, the presence of shock loads, vibrations, and misalignments. Different applications may require different coupling types and designs.
  3. Calculate Service Factor: Apply a service factor to the calculated torque to account for any variations in the load during operation. The service factor typically ranges from 1.2 to 2, depending on the application’s demands.
  4. Choose the Coupling Type: Based on the torque, speed, and application requirements, select the appropriate coupling type. Common coupling types include elastomeric couplings, grid couplings, gear couplings, and metallic disc couplings.
  5. Torsional Stiffness and Damping: Consider the desired level of torsional stiffness and damping based on the application’s need for rigidity and vibration absorption. High-speed applications may require couplings with good damping characteristics to prevent resonance.
  6. Temperature and Environment: Take into account the operating temperature and environmental conditions. Extreme temperatures or corrosive environments may require specific coupling materials or coatings.
  7. Alignment and Misalignment Tolerance: Assess the alignment capabilities of the coupling. Flexible couplings can accommodate misalignments, while rigid couplings require precise alignment.
  8. Space Limitations: Consider any spatial constraints for coupling installation. Some couplings may have compact designs suitable for confined spaces.
  9. Budget and Maintenance: Factor in the initial cost and ongoing maintenance requirements of the coupling. While some couplings may have higher upfront costs, they might offer longer service life and lower maintenance expenses.
  10. Consult with Manufacturers: Reach out to coupling manufacturers or specialists to discuss your specific requirements. They can provide expert advice and recommend suitable couplings for your application.

By carefully evaluating torque and speed requirements, considering the application’s characteristics, and selecting a coupling that matches the demands of the system, you can ensure optimal performance and longevity of the power transmission setup.

drive coupling

Types of Drive Couplings and Their Applications in Various Industries

Drive couplings come in various types, each designed to meet specific application requirements. Depending on the industry and the type of machinery involved, different types of drive couplings are used to optimize power transmission efficiency and reliability. Here are some common types of drive couplings and their applications in various industries:

  • Jaw Couplings: Jaw couplings are flexible couplings that use elastomeric inserts to transmit torque. They are commonly used in industrial pumps, compressors, and conveyors. The elastomeric inserts provide shock absorption and vibration dampening, making them suitable for applications where misalignment and vibration are present.
  • Gear Couplings: Gear couplings are robust and torsionally rigid couplings that use gear teeth to transmit torque between shafts. They are often used in heavy-duty applications such as steel rolling mills, paper mills, and marine propulsion systems. Gear couplings can handle high torque and misalignments, making them ideal for demanding industrial environments.
  • Disc Couplings: Disc couplings use thin metal discs to transmit torque and accommodate misalignment. They are widely used in high-speed applications, such as gas turbines, generators, and test rigs. Disc couplings offer high torque capacity and are known for their torsional stiffness and balance characteristics.
  • Grid Couplings: Grid couplings use a grid-like flexible element to transmit torque. They are commonly used in industrial pumps, fans, and compressors. Grid couplings offer excellent shock absorption and misalignment capability, making them suitable for applications where protection against sudden shocks is required.
  • Tyre Couplings: Tyre couplings use an elastomeric tyre between two hubs to transmit torque. They are widely used in various industries, including steel, mining, and power generation. Tyre couplings can accommodate misalignments and provide vibration damping, making them versatile for different industrial applications.
  • Bellows Couplings: Bellows couplings use a thin-walled metallic bellows to transmit torque and compensate for misalignments. They are commonly used in precision motion control applications, such as robotics, CNC machines, and medical equipment, where minimal backlash and high torsional stiffness are required.
  • Universal Joints: Universal joints are used to transmit torque between shafts at an angle. They are commonly found in automotive drivelines, agricultural equipment, and industrial machinery. Universal joints allow angular misalignments and are widely used in applications where rotational movement must be transferred through non-aligned shafts.

The choice of drive coupling type depends on factors such as torque requirements, speed, misalignment, and specific environmental conditions. Each type of coupling has its unique advantages and limitations, and selecting the right coupling for a particular application is crucial for ensuring optimal power transmission and machinery performance in various industries.

China best SWC Cardan Drive Shaft Coupling  China best SWC Cardan Drive Shaft Coupling
editor by CX 2023-12-13

drive coupling

As one of leading drive coupling manufacturers, suppliers and exporters of products, We offer drive coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of drive coupling

Recent Posts